
198.801
Introduction to Programming:
Programming in Python

Defining and
Documenting

Functions

Joanna Chimiak-Opoka, PhD
University of Innsbruck, Digital Science Center

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 5 / 34

Goal

Learn about the
pragmatic programming principles:
● DRY = don't repeat yourself
● characteristics of well-defined functions
● characteristics of well-written comments

Practice defining and documenting functions

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 6 / 34

The Evils of Duplications

Every piece of knowledge must have a

single,

unambiguous,

authoritative

representation within a system

...otherwise you have to remember to

update all representations!

DRY principle → Don‘t Repeat Yourself

[not DRY → WET → Write Everything Twice]

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 7 / 34

Origins of duplications

● Imposed duplication
– developers feel they have no choice
– the environment seems to require duplication.

● Inadvertent duplication
– developers don't realize

that they are duplicating information.

● Impatient duplication
– developers get lazy and

duplicate because it seems easier.

● Interdeveloper duplication
– multiple people on a team (or on different teams) duplicate a

piece of information.

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 8 / 34

Types of duplications in code
copy – paste

Subsequent occurrences
of copied code can be replaced
by loops (iterations)

Spread occurrences
of copied code can be replaced
by functions

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 9 / 34

Types of duplications in code
copy – paste – adapt

Occurrences of adapted copies of code
can be replaced by parameterized functions

The process of code improvement without changing its functionality
is called refactoring and should be supported by tests

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 10 / 34

Types of duplications
across the representations

The script and the comment
consists the same piece of information

functionality = low level knowledge
WET

In the script
functionality (low level knowledge) is provided

in the comment
design motivation (high level explanations) is provided

DRY

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 11 / 34

● Documentation in code
– keep the low-level knowledge in the code

– keep the high-level explanations in comments
(see characteristics of good comments on the last slide)

– generation of documentation from code

● Multiple representations of information
– write a simple filter or a code generator

● Language issues e.g. headers and implementations
– header files to document interface issues

– implementation files to document the details that users of
your code don't need to know

Avoiding Imposed Duplications

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 12 / 34

Avoiding Other Duplications

PERSONAL DATA 1
Name: Joanna
Familiname: Chimiak-Opoka
Address: Technikerstrasse 21a

PERSONAL DATA 2
Name: Joanna
Familiname: Chimiak-Opoka
Address: Innrain 15

PERSON 1
Name: Joanna
Familiname: Chimiak-Opoka

ADDRESS 2
Postal address: Innrain 15

ADDRESS 1
Postal address: Technikerstrasse 21a

● Inadvertent Duplication
– usage of normalized data

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 13 / 34

Avoiding Other Duplications

● Inadvertent Duplication
– usage of normalized data

– usage of method instead of derived values (performance!)

weight = 60
height = 170

bmi = 20.8

weight = 60
height = 170

bmi(weight, height)

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 14 / 34

Avoiding Other Duplications

● Inadvertent Duplication
– usage of normalized data

– usage of method instead of derived values (performance!)

● Impatient Duplication
– spend time up front to save pain later

– use parametrization to avoid copy–past–adapt

● Interdeveloper Duplication
– a clear design with a well-understood division

of responsibilities within it

– communication (information flow, history)

– shared utility routines

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 19 / 34

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 20 / 34

Characteristics of functions

● Functionality
– do one thing - do it well, but only this

● command / query separation
either do something or answer something, but not both.

● without side effects

– small, the smaller the better
– one level of abstraction per function

check: the stepdown rule:
 reading code from top to bottom like a narrative

● Signature
– with descriptive names
– with low number of parameters, preferably 0-2

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 21 / 34

Stepdown Rule: Example

● The same
level of abstraction
– domain-independent

● draw a rectangle
● draw a triangle
● draw a rectangle
● draw a square

– domain-specific
● draw a wall
● draw a roof
● draw a door
● draw a window

● Mixed
levels of abstraction

● draw a rectangle
● repeat 3 times

– draw a line
– turn 60 degrees

● draw a door
● repeat 4 times

– draw a line
– turn 90 degrees

draw a hause
even better
readability

good
readability

bad
readability

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 22 / 34

Stepdown Rule: Python Example

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 23 / 34

How to write functions
● Implement initial, “dirty” version:

– long and complicated,
– with lots of indenting and nested loops,
– with long argument lists and arbitrary names,
– with duplicated code…

● Write a suite of (unit) tests
– that cover whole functionality

● Refine the code… while keeping the tests passing
– splitting out functions,
– changing names,
– eliminating duplication,
– shrink the methods and reorder them….

● Final “clean” version of functions short, well named,
and nicely organized and following other rules

implement
„dirty“ version

define
test suite

refine
program

test
program

„clean“ version

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 24 / 34

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 25 / 34

Scope of variables

Scope refers to the visibility of variables.
In other words, which parts of your program can see or use it.

● Built-in scope with predefined names
Examples of function and variables names: open(), len(), __name__.

● Global scope with names defined at top-level of a module.
Once defined, every part of your program can access a variable.

● Local scope with names defined withnin a function.
If defined in a function variable‘s scope is limited to this single
function.

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 26 / 34

Built-in

Relations between scopes

Global

Local

variables from
outer scopes
are visible

?

?

L

G

B

?
LGB scope
lookup rule

variables from
inner scopes
are invisible

REMARK: when an exception is raised it, it goes to the outer scopes until it is caught or shown to a user

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 27 / 34

Exchanging information

names

INTERNAL COMMUNICATION

variables from
outer scopes
are visible

values

values from
a local scope
can be passed
to its enclosing scope

named
values

values from
an outer scope
can be passed
as arguments

COMMUNICATION WITH A USER

using input() and print()

program cannot
access printed values

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 28 / 34

Returning a value

def fun():
 a = 3
 return a

b = fun() b: 3

 3

def fun():
 a = 3
 print(a)

print(fun())

 3

b = fun() b: None

Returning a value from a function and using it in a program

… in an assignment

... in a function call
warning: it may be lost for a program

fun()

not using it at all / ignoring it
it gets lost for the program

Printing a value from a function, the value is lost for a program

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 29 / 34

Scopes: Examples

● local and global scopes
● name shadowing
● declaring names global

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 32 / 34

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 33 / 34

Program Interpretation

program

 to interpret by

Direct interpretation

of a program

as so called main program

Indirect interpretation

of a program

as so called module

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 34 / 34

in one file (program)

– for a small problem

possible and acceptable

– for a large problem

in bad style or

even infeasible

Usage Scenarios

Modular design,

functionality spread

over a number of files

– recommended

for a large problem

– importing third-party or

own module / package

A module is a single file (or files) that can be imported.

A package is a collection of modules in directories
that give a package hierarchy.

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 35 / 34

Technical Solution

if __name__ == '__main__':

MAIN
the top-level
script environment
pass

LIBRARY

def sqfeet_to_sqmeters(a_value):
 pass

def sqmeters_to_sqfeet(a_value):
 pass

run this program
python3 task.py

use the definitions
import task

user interaction
testing

task.py

 __name__ == '__main__' is False

the True-branch will be not executed

 __name__ == '__main__' is True

the True-branch will be executed # MAIN
the top-level
script environment
pass

function and
variable definitions

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 37 / 34

More Technical Remarks

● import p
– basic import command
– requires name space
– here: p.my_function()
– in general: <package name>.<function name>()

● from p import *
– acceptable only for small, own packages
– visible inside m name space
– my_function()

● import matplotlib.pyplot as plt
– handy for modules with long names or within packages
– here: plt instead of matplotlib.pyplot
– here: plt.plot()

● from matplotlib.pyplot import plot
– recommended for large modules to avoid

● unexpected name clashes (as with import *) and
● loading large amount of unused code (as with import)

– here: plot()

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 38 / 34

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 39 / 34

Characteristics of comments

● Spare comments
– the code should be so clear and expressive that it does not need the

comments at all
– explain yourself in code through descriptive names and clean structures

Good comments
● Legal: copyrights, licence, …
● Clarification:

– improve readability of code (e.g. re)
– intent behind a decision (why?)
– details about attempt

● Communication:
– warnings to other programmers,
– to do comments,
– amplification of importance,
– documentation of application public interfaces

(APIs)

Bad comments
● Content

– unclear meaning, forces you to look in
another module for the meaning of it

– redundant, the same information can be read
from code

– misleading, makes harder to read and
understand the code

● Format
– commented-out code
– formatted comments, e.g. HTML

● ...

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 40 / 34

Documentations Strings

docstrings
– Python documentation strings

provide a convenient way of associating
documentation with Python modules,
functions, classes, and methods.
An object's docsting is defined by
including a string constant as the first
statement in the object's definition.

● Documentation in code
– keep the low-level knowledge in the code

– keep the high-level explanations in comments

– generation of documentation from code

● Documentation of application public interfaces (APIs)

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 41 / 34

docstrings

Quick Documentation

Auto-Generated HTML Documentation

Used in static analysis to generate hints

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 42 / 34

20W198801 Introduction to Programming in Python, Joanna Chimiak-Opoka 43 / 34

Raise an Exception

● Python interpreter raises an exception when there is
an Error in a program and a user of the program see
the traceback information

● As a programmer, you can raise an exception
of a given type and with a given message, for example

raise ValueError(“a_value must be a positive number“)

● Customized message are related to your program in
opposite to standard messages which are related to
Python language. As such they are more helpful for the
user.

